闪烁体 PPO-POPOP 多元溶液体系

何迪洁 沈桂荣

(中国科学院上海光机所)

提要:本文报导闪烁体 PPO-POPOP 多元体系为溶液激光体系。变更 PPO-POPOP 的浓度即可获得 3600~4200 Å 波长区域的增强荧光谱带。有关体系的无辐射能量转移和偶极弛豫机制将进一步探讨。

Multicomponent solution of scintillators PPO-POPOP

He Dijie Shen Guirong

(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

Abstract: We report here the enlargement of tuning range with the multicomponents of PPOPOPOP scintillators. It has been shown that the enhanced fluorescence band at $3600 \sim 4200$ Å range can be obtained by varying the concentration of PPO:POPOP. The mechanisms for non-radiative energy transfer and the dipolar relaxation will be further studied in detail.

一、引言

染料激光器中的染料,大致可分离子化 合物染料和非极性染料两种。前者常含有阳 离子和阴离子,熔点高,蒸气压低,在极性溶 剂中溶解度好,如若丹明、香豆素染料;后者 熔点低,蒸气压高,在非极性溶剂中溶解,如 多环芳香族化合物、闪烁体染料。用于紫外 激光和蒸气激光,闪烁体染料更加合适。因 为它的发射谱带多处在较短波,并且光、热稳 定性好。但由于激光阈值较高,谱带复盖波 长不宽,未为人们广泛采用。

本文通过运用溶质与溶质的无辐射能量 转移和溶质与溶剂的偶极弛豫机制,选取闪 烁体染料 PPO(2,5-二苯基噁唑)、POPOP [2, 2'-对苯撑双(5-苯基噁唑)]和溶剂甲苯、 N-二甲基甲酰胺 [(CH₃)₂NCOH] 多元溶液 体系,实现约 600 Å 调谐范围的紫外增强 荧 光辐射输出,阈值比香豆素 C₄ 低。

染料激光调谐范围加宽方法大致有:提高溶液浓度、调整溶液的酸碱度或水份以及用电化学反应^[3]等,这些方法仅适用于离子化合物,不适用于闪烁体染料。

PPO 和 POPOP 分子中含有孤对 P 电 子原子 O、N, 在极性溶剂作用下, 有可能产 生 *n*-π* 跃迁的蓝移和 π-π* 跃迁的红移以 及谱带重迭。选用甲苯与极性溶剂 *N*-二 甲 基甲酰胺混合溶剂进行实验,可能得到预期 结果。

收稿日期: 1980年12月24日。

· 30 ·

178. 49, 110. 7,

二、实验结果与讨论

实验用的闪烁体染料 PPO 是上海试剂一厂生产, POPOP 是进口分装。 溶剂 甲苯、N-二甲基甲酰胺是国产分析纯试剂, 经光谱检查, 未发现杂质吸收和杂质发 光。

泵浦源为 200 千瓦、10 毫微秒氮分子激 光器,激光束经 f=35 厘米石英透镜聚焦为 φ1 毫米光束,横向激励。样品池为通常吸收 光谱用的 1 厘米长的方形石英池,外部不设 激光共振腔。光激励时,增强荧光辐射光在 与泵浦光束垂直方向输出,通过三透镜聚焦 系统投射入国产半米光栅光谱仪拍谱。

分别配制 PPO 甲苯溶液和 POPOP 甲苯 溶液。溶液的克分子浓度分别为 $4 \times 10^{-2} M$ 和 $5 \times 10^{-4} M$,称备用溶液。将两种备用溶 液,按不同浓度比配成 PPO-POPOP 二元 溶液,在光激励下拍得增强荧光辐射光谱,如图1。

由图1可得:

1. POPOP 4190 Å 的发射谱带强度,随 POPOP 克分子浓度逐渐增强而增强,而 PPO 的发射谱带 3629~3807 Å 却逐渐减弱 以至消失。

以试剂甲苯把备用溶液逐步稀释,在光 激励下通过拍谱,求得在实验条件下实现增 强荧光辐射输出的极限浓度,PPO是2.4× 10⁻³*M*、POPOP是1.7×10⁻⁴*M*。证实 PPO 发射谱带的消失,不是由浓度下降引起。

2. 当 POPOP 的 克 分 子 浓 度 到 达 1×10⁻⁴ *M* 时,在 3980 Å 附近呈现一新发射 谱带。当 PPO 的克分子浓度比 POPOP 约 大两个数量级时,新谱带的强度最强。这个 新谱带即非 PPO 的固有谱带,也非 POPOP 的固有谱带。我们拍摄了 PPO-POPOP 二 元溶液和与之相当浓度的备用溶液的吸收光

图之可见。卫

31

PPO	POPOP	
(克分子浓度)	(克分子浓度	
4×10-2	0	
3.6×10^{-2}	5.6×10-5	
3.2×10-2	1×10-4	
2.7×10-2	1.7×10-4	
A. A. P. P. P. P.		
2×10^{-2}	2.5×10-4	
1.3×10-2	3.3×10-4	
8×10 ⁻³	4×10-4	
4×10-3	4.4×10-4	
0	5×10-4	

Å H₂4³40.47Å H₂4101.74Å 图 1 PPO-POPOP 甲苯溶液体系的增强荧光辐射谱带 谱,二者非常一致。这就初步推断:新谱带的 来源是与处于激发态的分子间作用有关。预 计 *A**+*B* 和 *A*+*B** 两状态的分子间能够建 立一种平衡从而发射光。

3. POPOP 4190 Å 发射谱带随 PPO 的 加入量增加渐向蓝移,最大位移约 24 Å,此 时 PPO 的 克 分 子 浓 度 为 8×10⁻³ M,此 后, PPO 浓度再增,4190 Å 不再移动。新 谱带 3983 Å 也呈类似现象,向蓝移最大约 14 Å。

如上所述,体系中 PPO 的猝灭,新谱带 的呈现以及谱带位移等都标志着体系中产生 长距的偶极-偶极能量转移过程。

如图 1 所示,改变 PPO 和 POPOP 相 对浓度只能获得不同波段的、分立的发射谱 带。为此我们作了如下的实验。

首先,我们在 PPO 的备用溶液中加入 各种容积比的 N-二甲基甲酰胺溶剂,进行 光激励。拍得增强荧光辐射光谱(图 2)。从 图 2 可见: PPO 在紫外区的两个发射谱带 3629 Å、3807 Å 重迭成一宽带。当甲苯与 N-二甲基甲酰胺的比值为 1:16 时, 增强荧光辐 射强度下降, 此时, PPO 已临极限浓度

接着,配制了

$$PPO: POPOP: \bigcirc : (CH_3)_2NCOH$$

多元溶液, 观察到 3629 Å、3807 Å 和 3978 Å 三个荧光增强荧光辐射谱带已弥漫成近 400 Å 的宽带, 拍得的增强荧光辐射谱带在 图 3 给出。与香豆素 C₄ 乙醇溶液谱带(图 4) 相比, 谱带要宽得多,强度较强,并处于较 短波。

采用自动记录式黑度计,从谱片中扫描 得的增强荧光辐射强度与波长分布曲线由 图 5 给出。实验结果表明:采用这一体系可 以无需更换不同染料或染料盒,就能实现 3600~4200 Å 范围的调谐。表1列出有关 的参数。

 $\lambda \rightarrow$

 PPO
 ○: (CH₃)₂N(OH

 (克分子浓度)
 容积比

 2.4×10⁻³
 1:16

 4×10⁻³
 1:8

 8×10⁻³
 1:4

图 2 PPO: O: (CH₃)₂NCOH 溶液的增强荧光辐射谱带

CH₃

₹ 5 PPO:POPOP: C: (CH₃)₂NCOH

图 4 香豆素 C₄ 乙醇溶液(5×10⁻³ M) 的增强荧光辐射谱带

多元体系的增强射谱强度-波长分布

施主 PFO 受主 POPOP (克分子浓度) (克分子浓度)	受主 POPOP	溶剂的容积比		增强荧光辐射 波长范围 图 5 曲线 (Å)	用环形被光器之
	CH ₃	(CH ₈) ₂ NCOH	图 5 曲线注		
4×10^{-2}	0	1	Det to take	3629 (λ _{max})	曲线 D
		No.	员的光理差,总是	3807 (λ _{max})	
2.7×10^{-2}	1.7×10^{-4}	1	0	3978 (λ _{max})	曲线C
1.3×10^{-2}	3.3×10-4	1	0	3983 (λ _{max})	曲线 B
		12-11-11-11-11	一訳、ロガ光	4166 (λ _{max})	其中 A 为 环形:
0	5×10^{-4}	1	0	4190 (λ_{max})	曲线A
8×10^{-3}	0	1	1 1 1 4 1 1 A	3620~3880	曲线I
1.3×10 ⁻²	8×10-5	1	La marin La survey	3660~4010	曲线 III
7×10^{-2}	1.7×10-4	1	1	3960~4060	曲线 II

表1 增强荧光辐射谱带波长分布

(下转第 29 页)

· 33 ·

$$K'd = \frac{2}{(K^2 + \gamma^2)} \left\{ \frac{Kk^2}{2\gamma} (\epsilon_2' - \epsilon_1') - \frac{K^2}{\gamma} K' - \gamma K' \right\}$$
$$= \frac{Kk^2}{(K^2 + \gamma^2)\gamma} (\epsilon_2' - \epsilon_1') - \frac{2K'}{\gamma}$$

得:

$$K' = \frac{Kk^2(\epsilon'_2 - \epsilon'_1)}{(K^2 + \gamma^2)(2 + d\gamma)}$$
$$= \frac{K(\epsilon'_2 - \epsilon'_1)}{(2 + d\gamma)(\epsilon_2 - \epsilon_1)}$$
$$= (1 - \Gamma) \frac{k^2}{2K}(\epsilon'_2 - \epsilon'_1)$$

- [1] Tetsuhiko Ikegami; IEEE J. Quant. Electr., 1972,
 QE-8, 470.
- [2] H. Kressel, J. K. Butler; "Semiconductor Laser and Heterostructure LEDS" (Academic Press, New York, 1977), p 165.
- [3] H. C. Casey, Jr., M. B. Panish; "Heterostructure Lasers" (Academic Press, New York, 1978), p. 167, 176.
- [4] H. C. Casey, Jr.; J. Appl. Phys., 1978, 49, No. 7, 3684.

Multicomponent solution of scintillators PPO-POPOP

(上接第33页)

三、结 束 语

1. 以 PPO 为供能分子, 以 POPOP 为 受能分子, 和溶剂甲苯、N-二甲基甲酰胺构 成多元溶液体系, 获得宽调谐范围的增强荧 光辐射输出,阈值也较低。

2. 这一途径可能应用于其他闪烁体体 系以及染料蒸气体系,探索工作将继续进 行。

3. 由于目前设备条件限制,还缺乏一

些定量数据,有关溶质与溶质的相互作用和 溶质与溶剂的相互作用机制,将进一步探 讨。

参考文献

- I. B. Berlman; "Handbook of Fluorescence Spectra of Aromatic Molecules", 2nd ed., New York, 1971.
- [2] I. B. Berlman; "Energy Transfer Parameters of Aromatic Compounds" (1973).
- [3] V. T. Tonin et al.; Sov. J. Quant. Electr., 1978, 8, No. 5, 567.

如果如果你不知道。但不可以在你们在你们不能你,如 多节美香族化合物。闪烁体算时以加合适。因 说是和蒸气激化,闪烁体算时以加合适。因 为它的支射谐带多处在较短波,并且充...熟意 定处好。但由于最无赖佩较高,谐带复盖波 长不觉,未为人们作及杀用。

"本实通过运用溶质与溶质的洗糊熟能量 特移和溶质与溶剂的固板融资限制,被取其 你体染料 PPO (2,。碰工味着驅唑)、POPOP

. 29 .